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ABSTRACT

. Vibration damping measurements are currently
obtained using sen:.ors that measure beam tip
displacements by determining the position of the
beam cross section with time. In composites,
bending~-twisting couplings can occur which will
result in the beam undergoing two dimensional
vibration motion when subjected to a bending
moment. A new monitoring technique was
conceptualized and validated which utilizes
embedded optical fibers as the sensors. This
paper discusses the experimental validation of
the concept, the physics involved in the
optimization of the technique, and the areas
in need of further development. The experiments
have shown that two dimensional vibration can be
detected using this technique. Actual
displacement time information was not available
for the specific test apparatus used and
therefore damping loss factor information was not
obtained. Further development of the data
acquisition system and methodology for
determination of the image center is required
along with an appropriate grid xy sensor in order
for the technique to be acceptable as a new
technique for measuring the vibration damping
loss factors for materials.
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under Program Element 62766N, Task Area RZ66300, and DTNSRDC Work
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INTRODUCTION
Damping loss factor determination for composite materials is
currently conducted using a variety of sensors. The sensors are

used to determine the displacement of the composite specimen
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during vibration as a function of time. A Fast Fourier Transform
(FFT) is performed on the displacement vs. time information to
obtain the frequency response of the vibrating beam in the form
of an amplitude vs. frequency plot. Using this plot and the half-
power band width method(1l), the damping loss factor can be
determined. Two of the more commonly used sensors available for
determining the displacement vs. time information are the
noncontact eddy current probe and the attached accelerometer,
Both of these produce an electrical signal which can be related
to a displacement.

There are two problems that are often overlooked when using
these sensors. First, the analysis, using the equations of motion
of a beam in bending, assumes certain conditions at the ends of
the beam are known. Experimentally, it is assumed that the
displacements are measured at the tip of the specimen. The
sensors, however, can not be positioned at the end of the
specimen, but are instead positioned close to the end and do not
therefore measure actual tip displacements. Secondly, these
sensors detect displacements, or an acceleration, at a particular
cross section of the specimen. The assumption made in the data
reduction is that the cross section moves uniformly with one
dimensional vibratory motion, i.e. the plane sections remain
plane. For metals, this assumption is valid, since the material
is homogeneous and isotropic. With composite materials, this is

not necessarily the case since bending-twisting couplings can

arise which will result in two dimensional vibratory motion.




Composite materials can be fabricated with fibers oriented
in many directions. Two generic orientations are off-axis and
angle ply. In the off-axis case, the fiber orientation is all in
one direction, such as 20 degrees from the loading axis. In the
angle ply configuration, the fiber orientation is, for example,
(+20). As a result of the fiber orientations, stress couplings
can occur. These include stretching-shearing coupling, twisting-
stretching coupling, bending-twisting coupling and bending-
> stretching coupling.

In vibration testing, the composite material is subjected to
a bending moment. If the material has a laminate configuration
“ which has either a bending-stretching or a bending-twisting
coupling, the loss factor that is measured for the material is
a combination of the material’s loss factor as well as the loss

due to the stress coupling from the particular configuration.

R

The configuration of a composite has been shown

experimentally to effect the materials loss factor(2,3). In

- -

figure 1, Adams and Bacon(2) have determined the damping loss
factor of angle ply (+0) and off-axis (+6) graphite/epoxy
composite material. They show that the maximum in the loss factor
' occurs at different angles for the angle ply and off-axis sam

‘ ples. In addition, the rate at which the magnitude of the loss

X factor increases are significantly different in the two cases.

) When the composite is subjected to a bending moment in the

x-direction, a curvature results, kxy' if the D inverse matrix

1

16 term (figure 2). In the case of an off-axis laminate,

| has a D
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this term exists. The magnitude of the twist is dependent on the

magnitude of the D-iG

term as a function of angle. The maximum in the magnitude of the

term. Figure 3 gives the magnitude of the

twist occurs at approximately 30 degrees. This corresponds to the
maximum in the loss factor for the off-axis specimens, given in
figure 1. This suggests that the twist which occurs in the off-
axis specimens in bending may be the mechanism of a large energy
dissipation.

A further result of this analytical finding is that the off-
axis specimen currently is not adequate for determining the
damping loss factor as a function of angle for composite
materials. If the degree of twist and the resulting damping from
the bending-twisting coupling can be experimentally determined,
then it may be possible to use the off-axis specimen for

determination of the effect of angle on loss factor.

ANALYSIS OF THE EMBEDDED FIBER OPTIC SENSOR
Several aspects of the embedded fiber optic displacement
sensor need to be addressed in assessing the feasibility of
utilizing the system for tip displacement measurements in
cantilever beam vibration damping experiments. These include the
fiber optic light spread, fiber optic image distortion, sensor
scanning rate and apparent deflection.

Light Spread: When the end of an optical fiber is separated from

a sensor by a finite distance, the light emerging from the fiber

end spreads. This phenomena is shown schematically in figure 6.




L

;«.'

"
!"
n

- The image that forms on the sensor is a circle, the diameter of
: . which is given by (4)
>

%

n D =d + 2Stan(0) (1)
D)

X

! where D = image diameter

£\ d = optical fiber core diameter

., S = sensor distance from optical fiber end

- & = optical fiber’s acceptance cone half-angle.

y . A

&) 6 is related to the fiber’s numerical aperture, NA, by the
:Q following eg.ation,

Y

l' . =1

:ﬂ 8 = s1in " (NA). (2)
“

L]

M For this applications, the possible range of all of the

'.I
‘} variables in equation 1 are known. The variables and its
Ex

o associated limits are given in table 1. Also given in table 1 are
* the calculated maximum and minimum image diameters using equation
K 1 and the range of values in this table.

" The maximum tip deflection that the beam will normally be

nh subjected for vibration damping loss factor determination will be
')
A in the range of 0.0005 to 0.005 inches. The reason that the

:1 displacements are usually kept to this minimal level is that

N4 typically, testing is conducted in air and it has been shown that
Wt

:‘ aerodynamic damping can be a major contributor to the loss factor
L)

determined from the cantilever beam test when displacements

@

ok become large(5). Comparing this range to the range of image

¢

:j diameters given in table 1, it is seen that the image diameter is
&

b at best on the same order of magnitude as the tip deflection and
hY at worst, an order of magnitude greater. In addition, the tip

d
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deflection will decrease with time atter 4an 1nitlal excitat,on 1t
oneé uses the impact method for beam excitation{é;. The loss
factor determination 1s obtalned from tip detlections vs. time
information.

Thus, it would appear at this point that the sensitivity of
the proposed system would be inadequate for accurate
determination of loss factor. However, by varying the threshold
level of the optical sensors, detected image size can be varied.
The light that emerges from the optical fiber from a low power
laser is most intense in the core region. As the light spreads,
the intensity decreases radially outward from the center beam.

A conceivable sensor would be one which contains an xy array
of digital switches sensitive to, and activated by, light with an
adjustable threshold. The size of the switches and spacing
between them would have to be small compared to the displacements
expected in order to obtain accurate measurements. The image that
forms on the sensor will thus be large with respect to the
switches and spacing. The size of the image could be varied by
adjusting the threshold of light necessary to activate the sensor
or a reference point on the image can be calculated. For example,
the image center could be calculated and its motion monitored.
The problem then becomes whether an accurate determination of the
center can be made. These considerations are in need of further

testing.

Image Distortion: If the longitudinal axis of the fiber is not
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E% normal to the plane of the sensor, the above mentioned circular
'f ’ .mage <an become distorted. This is shown schematically is

»,

E; figure %. The image that results is an ellipse. This distortion
:i will occur as the cantilever beam undergoes its vibratory

. ~ct.on. Knowing the angle of incidence of the light to the
‘Z? sernscr and employing equation 1, the majcr axis of this ellipse
.;E ‘an te caliculated from simple geometry. This angle of incidence
: .z re.ated to the slope of the beam from the clamped end.
- As the beam 1s subjected to a load normal to the plane of the
if material, 1t will deflect with a particular slope dependent on
;i various material characteristics. For isotropic materials whose
'ES response is governed by simple beam theory, the relationship
;-: between the tip deflection and beam slope can be determined. For
‘;: nidspan loading, the slope is a linear function of tip deflection
i% and beam length. This relationship is given by equation 3 and
Qﬁ is shown graphically is figure 6(7).
o

3 . _ 6! 180
L © T 5 LTt (3)
:' where ¢ = beam tip slope in degrees

43 * = beam tip deflection in inches

o L = beam length in inches.
Eé The relationship between loading, deflection and slope of a
_ii composite beam is quite complicated, especially for unbalanced
EE and. or nonsymmetric laminates. For the sake of simplicity,

Ei cgquation 3 is used in all subsequent calculations. Although not
‘l: sn*  rely correct, it is felt that for an order of magnitude and

e e e e T e e T T T e e o A ) 'l '
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i) parametric analysis, these values are more than adequate.

. The equation for the major axis of the ellipse shown in 4
i)

LX)

Q‘ figure 5 is a complicated function of several variables. It can
o .
&4 be derived using equation 1 and simple geometry. The result of
;“ this derivation is,

%
%? A= 24d (cos® cos?® + sin’® sin%) + 4S cost cosf sing
A 2 cost (cos® cos® - sin’ sin®) (4)
\ where A = length of the major axis of the ellipse in inches

e d = distance of sensor from beam end in inches
a' ¢ = fiber’s acceptance cone half-angle
lﬁ? ¢ = beam tip slope
ey

W
‘ Defining distortion as the difference between the length of
ﬂ; the major axis of the ellipse and diameter of the circular image
Lt

%; from the optical fiber in its unloaded position, fig. 4, a
A4
A parametric evaluation can be performed. Figures 7A-7E show the
3‘ trends of this distortion as a function of each of the above
i_ variables. In each case, the distortion was calculated by holding
o

?g all parameters constant except for the variable in question. The
':ﬂ results are that the distortion increases with increasing values
Wy
a of the parameter with the exception of the beam length where the
o."

:' distortion decreases with increasing beam length.
j?' From figure 7, a worst case situation can be determined. The
[}
ﬁb expected range of values for the core diameter, beam length,
'?s,l
H" sensor distance, maximum tip displacement, and numerical aperture
2
:"f are given in table 2. From these values, the distorted image

"
19744
L major axis is calculated and reported in table 2. By comparing
B
Pyt

v the calculated distorted image axis with the unbent image

i

hw diameter given in table 1, it is seen that distortion due to the |
Magt
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bending of the beam is negligible. Thus, for the test conditions
anticipated, image distortion 1s not expected to be a problem.

Scanning Rate: One method used to calculate the damping loss

factor of a beam requires determination of tip deflection vs.
time information. An FFT is performed on the data to convert this
to amplitude vs. frequency. Using the half power point method,
the loss factor is then determined(8).

The critical part of this procedure is the ability to obtain
information fast enough to perform an accurate FFT. The required
sampling rate must be greater than at least twice the frequency
of the highest harmonic to prevent aliasing errors(l). In this
case, sampling rates of 10,000 to 100,000 points per second are
probably necessary. This means that the entire sensor grid must
be scanned and the "off/on" state of the switch stored about once
every 10 - 100 microseconds. Current state of the art hardware

exists which can accomplish this task.

Apparent Deflection: When a beam is subjected to a vibratory
motion, its slope from its clamped end will vary. As a result of
the slope change and the fact that the sensor and beam are
separated, the deflection, measured from the position of the
incident light on the sensor, will be "amplified" with respect to
the actual tip deflection. The apparent deflection, derived from

geometric considerations is given by

!
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(5)

A‘.) A e Ltantée)

where A - apparent .leflection at the sensor

A = actual deflection of the beam tip
“ =+« sensor distance
¢ - slope of beam

At tirst, it would appear that this relationship could be
used to enhance the sensitivity of the technique by increasing
the distance of the beam end to the sensor. However, by recalling
equation 1, the image diameter also increases with sensor
distance. To determine the effect of increasing the distance of
the beam end to the sensor, the ratio of the apparent deflection
to the actual deflection and the ratio of the apparent deflection
to the image diameter was determined and is plotted in figure 8.
The graph shows that although the actual deflection is amplified,
this apparent deflection is overwhelmed by the increase in image
diameter. The image diameter increases with distance at a much
faster rate than the apparent deflection. In fact, figure 8 shows
that the most accurate data will occur at very small sensor
distances. It should also be noted that the parameters in figure

8 were chosen which would results in the smallest image diameter.

EXPERIMENTAL TECHNIQUE
A new experimental method was conceptualized in order to
determine the degree of twict occurring during dynamic testing
for the determination of the damping loss factor of the
composites(9). This new technique involves embedding optical
fibers into the composite sample, through which light, via a

laser, is passed. The light passing through the embedded optical

10




R fiber, impinges on a photodetector grid. This sensor consists of

&'; an x-y square array of 512 x 512 optical detectors that are

}’: , contained in an area of approximately .5 x .5 in. Displacement
??f measurements versus time are then determined with the sensor and
é;i recorded using a computer. The demonstration of the technique was
§  carried out using the equipment and facilities at Virginia

Polytechnic Institute and State University, Fiber Optic Center.

The purpose of the demonstration was to determine if the

ﬁ? vibrations of a off-axis composite cantilever beam are truly one-
$3 dimension~".
é;; Al :hough such an investigation might seem trivial, the
f\: successfu. demonstration of this concept would enable two-
f n dimensional motion to be determined for the first time. This
é?: would further enable an explanation of the difference in the
Egﬂ damping loss factor determined in composite materials for off-
R& axis and angle ply laminate materials. Determination of the beam
g? vibratory motion may help to explained the mechanisms by which
ir energy is being dissipated through the motion that occurs when
:ﬂ‘ the material is subjected to a dynamic bending displacement, and
;gk would also lead to design practices to optimize this energy

'i dissipation.
A ? Current sensors have the previously mentioned disadvantage of
,:g averaging the displacement of a beam cross section as a function
;:& of time. In addition, these sensors determine the displacement by
:i3 conver ting an electronic signal to a specific beam tip
:’ﬁ displacement. In these cases, the displacement is not made using
%

11
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first principles and is therefore not as precise or accurate as
one which would use an actual measure of the tip displacement. In
addition, theoretical determination of the loss factor assumes
that the displacements being measured are at the tip of the beam.
However, due to the nature of the sensor, the actual measurement
is made at some finite distance from the tip of the beam.

The system demonstration, utilizing fiber optics in
composites, therefore has a number of distinct advantages in both
measurement sensitivity and implementation. First, the sensor
itself is embedded into the material to be tested. The sensor

does not significantly effect the mechanical characteristics of

the composite nor does it concentrate mass at a particular
location along the beam length. This can therefore be considered
éssentially, a noncontact sensor. Secondly, the displacements
that are measured are from light that exits the end of the fiber.
This means that the displacements measured are actually tip
displacements, something that has yet to be measured in the
cantilever beam experiment. Thirdly, by positioning two or more
optical fibers into the composite, vibratory motion of one beam
position relative to another can be determined which will show
whether the vibration is truly one dimensional or two
dimensional. This last aspect is by far the most significant.
The material used in the experimental investigation was
T-300/5208 unidirectional graphite/epoxy. Panels were fabricated

with the configuration (208/0/208) and [(+20/-20)4/0/(—20/+20)4),

representing an off-axis and angle ply material respectively. The




e
ﬁf optical fiber used was a single mode optical fiber, with a
Si ’ wavelength of 1300 nm, having a core diameter of 9 micron made by
f&: Owens Corning (material designation SDSD360726AA, 218449-10,
pls
i‘ 860202). The optical fiber was placed in the 0 degree ply so that
{'- fiber distortion will be at a minimum. There was some distortion
B\
'% of the graphite fibers in the immediate area of the optical
%
%j fibers as shown by the photomicrograph (fig 9). To alleviate this

-

distortion, two plies of prepreg should have been used instead of

»x

only one. The material was cured using the manufacturers cure

otk ol o,
g A i

cycle. The optical fiber was of such a length such that it was

sg coincident with the edge of the material on one end and extended
35 approximately 3 inches out of the beam on the other end.

iﬂ In order to propagate light into the specimen, splices were
Tg made with the same type of optical fiber. The apparatus used to
;3 perform the splice is shown in figure 10. After splicing the new
E$ optical fiber onto the one in the composite, the specimen was

jé placed into a clamping device to hold it in place, obtaining a
iﬁ. cantilever beam configuration. Light was then propagated through
;E the optical fiber using a 5 milliwatt Helium-Neon laser. The

:; laser is focused through a lens to the optical fiber. The optical
Eﬁ fiber is held in place by a clamp which has a horizontal and

- vertical positioning capability. This is adjusted until the

f:: optical fiber has light passing through it in the form of a 4-
‘; lobe pattern. This pattern is obtained since a single mode fiber
:; is used and the maximum intensity is obtained when the 4-lobe

;3 pattern is seen. The light exiting the fiber at the beam end was
:

" 13
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visible to the unaided eye, as shown in figure 11. It should be
noted that the 4-1lobe pattern is not visible in figure 11.

The sensing system was a General Electric solid state

video/digital camera, Model TN2500 consisting of a Charge
Injection Device(CID) imaging array sensor. The CID consists of a
two dimensional array of coupled metal-oxide silicon capacitors
which collect and store the photo generated charge. This signal
is then dumped to an Optomation II Electron Vision System, model
PN-2304 for signal interrogation. This pattern is visualized on
the CRT via the Optomation II system. The signal can then be
optimized by varying the threshold and noise levels until a
minimum area is obtained on the CRT.

With the equipment set-up, the composite beam is set into
vibration by impacting it near the clamped end. The light
incident on the sensor is then processed and the light motion
displayed on the CRT. For the demonstration, the twist was
visually detected on the CRT. However, due to the inability to
store the information, no quantitative data was obtained.
However, similar instrumentation can be configured to accurately
determine displacement/time information for the determination of

the damping loss factor.

CONCLUSIONS
The use of embedded optical fibers as a sensor for !
measuring tip displacements in the determination of

composite material damping loss factor is a useful idea. This

14
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22\ technique has the potential for determining the beam tip
- ’ displacements using first principles. In addition, two-

i

E&; dimensional motion can be determined for the purpose of

g& identifying loss mechanisms in composite materials. The actual
jil motion of the beam end was able to be determined qualitatively
§$‘ while the beam was subjected to vibratory motion. In order to

%;: obtain quantitative displacement vs. time information, a very

At

a fine grid xy optical sensor along with a high speed data

i
?§. acquisition system is required. The accuracy of the technique
E%ﬁ‘ will depend on the ability to calculate and measure small

A;’ displacements of large area images. Additional testing is

%‘é necessary before this accuracy can be assessed. The ability to
%% . acquire and store the displacement information from a xy grid

h sensor is well within the current capability of existing

.

%: hardware.

%s Image distortion due to the fiber bending, although initially
'jA thought to be a concern, will not be a problem as long as care is
U

?ﬁi taken to initially align the specimen and the xy grid sensor.

ﬁge Finally, from the analysis of the system, it was shown that

_ ; the distance between the beam and sensor should be made as small
;ﬁ: as possible in order to minimize light spread, and thus the image
;ﬁ% diameter projected onto the xy grid sensor. If this image becomes
?L too large, it is conceivable that the actual motion could be

?WQ undetectable with respect to this image.
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ot Image Diameter, D 0.0004 - 0.04164
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&' Table 1. Range of values for the core diameter, sensor diameter,
W and numerical aperture used to determine the image diameter from
X)) . R .
mz on optical fiber onto an xy photodetector grid.
tl'z,
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.'I.
&.0
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h
2b§ PARAMETER EXPECTED
RANGE
i B I —
3# Core diameter, d 5 - 1000
e Beam Length, L 6 - 25 in.
N Sensor Distance, S 0.0005 - 0.002 in.
e . . .
W Max. Tip Displacement,d 0.0005 - 0.005 in.
) Numerical Aperture, NA 0.2 - 0.55
BUIN ] e e e o o o e o e e A | —— - — o ———
‘.'Q --------------------------------------------
W Distorted Image Axis, A 0.0004 - 0.04164
»
" (calculated value)
b
70

I3 .‘

’§2 Table 2. Range of values for core diameter, beam length, sensor
p - distance, maximum tip displacement, and numerical aperture used
' to determine the major axis of a distorted optical image from a
Nyl beam tip displacement.
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OUTER PLY FIBER ORIENTATION (degrees)

10
Damping loss factor versus fiber orientation of off-axis and angle ply graphite

epoxy (after Adams and Bacon (2)).
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ol Fig. 2. Schematic of a beam subjected to bending in the
x-direction showing resultant moments
0. and curvatures.
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¢ sio. % . > nematic of laser light exiting embedded opiical fiber
~rowins Tight spread as a function of distance from the

Srid senser.,

RN NG [ 1 H P . P OB AAECOAONIGIGHGEH
RN SN RO “;_.,‘g..g.o;..;..,u.a‘.«‘;\.._u i, ‘0“.0‘,.0.3‘}i"i".ﬁf.i‘tp".‘- e '..Oa'{‘l,:‘vh.lh.t‘ ".:.t‘\‘,“h“‘-‘:’a'.'(\“A?"a‘.-" St




SENSOR

Fig. 5. Schematic of the laser light exiting the embedded optical
fiber of a beam in bending showing the distortion of the
light incident on the Xy grid sensor.
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,') Fig. 9. Photomicrograph of a graphite/epoxy composite
W 9 ply (20,/0/20,) laminate with embedded

-P: optical fiber, center, in the 0 degree ply
RS showing distortion to of graphite fibers

! around the optical fiber.
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